FOR PATIENTS WITH LYSOSOMAL ACID LIPASE DEFICIENCY (LAL-D) AND THEIR CAREGIVERS

YOUR GUIDE TO INFUSIONS WITH KANUMA® (sebelipase alfa)

INDICATION

KANUMA® (sebelipase alfa) is indicated for the treatment of patients with a diagnosis of LAL-D.

Please see the Important Safety Information on page 10 and the attached full Prescribing Information for KANUMA®.
KANUMA INFUSIONS AND YOU

You may have questions about starting your KANUMA treatment. Be sure to discuss your questions with your doctor. Use this brochure as a guide.

Inside, you will find

Information about KANUMA (pages 4-5)
What to expect before, during, and after your infusions (pages 6-7)
Support for people with LAL-D (pages 8-9)

Talk to your doctor if you have questions about KANUMA or LAL-D. For additional support or questions, contact the OneSource™ patient support program at 1-888-765-4747. See page 8 for more details.

IMPORTANT SAFETY INFORMATION

Life-threatening and severe allergic reactions may occur in people who receive KANUMA. These reactions may occur in people who are starting treatment with KANUMA or in people who have previously received KANUMA without having an allergic reaction. Seek immediate medical care right away if you have any of the following signs or symptoms: chest pain or discomfort, wheezing or trouble breathing, rash or hives, red eyes, swelling of eyelids, rapid heartbeat, rapid breathing, or runny nose.

Please see the Important Safety Information on page 10 and the attached full Prescribing Information for KANUMA®.
LEARN MORE ABOUT KANUMA

What is KANUMA?
KANUMA is the only FDA-approved prescription treatment for patients with a diagnosis of Lysosomal Acid Lipase Deficiency (LAL-D).

What does KANUMA do?
Patients with LAL-D are born with an important enzyme that is missing or not working properly. This enzyme, called lysosomal acid lipase (LAL), plays an important role in a key part of your body’s cells, called lysosomes, by breaking down fatty material. KANUMA helps to replace the LAL enzyme that is missing or not working correctly.

How is KANUMA administered?
KANUMA is administered by intravenous (IV) infusion. An IV infusion is a way of delivering medicine directly into your bloodstream.

What is the recommended dosage of KANUMA?
For children and adults presenting with LAL-D, the recommended dosage of KANUMA is 1 mg/kg of body weight given by IV infusion once every other week.

For patients with rapidly progressive LAL-D presenting within the first 6 months of life, the recommended starting dosage of KANUMA is 1 mg/kg of body weight given by IV infusion once weekly. For infants under 6 months who do not respond to this dose, the doctor may increase the dosage to 3 mg/kg of body weight once weekly.

How long will my infusion last?
Your KANUMA infusion will last at least 2 hours, though your doctor may decide to increase or decrease your infusion time.

Where will I go for my infusions?
Your doctor will talk with you about when and where your infusions will happen. They may be scheduled in his or her office, a hospital, or a specialized infusion center.

Do I need to get all of the infusions recommended by my doctor?
Yes. LAL-D is a genetic disease, which means that your body’s makeup does not allow it to produce a properly functioning LAL enzyme. KANUMA is intended to replace the LAL enzyme that does not work correctly or may be missing. Talk to your doctor about the importance of staying on treatment.

When will I know if KANUMA is working?
You may not feel KANUMA working. Your doctor will monitor your care and review the appropriate test results.

Does KANUMA have side effects?
In infants with rapidly progressive disease presenting within the first 6 months of life treated with KANUMA, the most common side effects are diarrhea, vomiting, fever, stuffy or runny nose, low hemoglobin (red blood cells), cough, swelling of the nose and throat, and hives.

In pediatric and adult patients treated with KANUMA, the most common side effects are headache, fever, sore throat, swelling of the nose and throat, weakness, constipation, and nausea.

IMPORTANT SAFETY INFORMATION
Tell your doctor if you have had a severe allergic reaction to eggs or egg products, as people with a known history of egg allergies were excluded from clinical trials.

Please see the Important Safety Information on page 10 and the attached full Prescribing Information for KANUMA®.

KANUMA is administered by IV infusion.
KANUMA INFUSIONS: WHAT TO EXPECT

BEFORE YOU GO

Bring these items to your first appointment:

• Your insurance card and ID (you may also want to call ahead to see if there are any other documents you will need)
• Items that may make you feel more comfortable (for example, a favorite pillow or blanket)

WHEN YOU GET THERE

At the start of your appointment, you will

• Check in with a receptionist who will look at your insurance card and ID, and may ask you to fill out some paperwork
• Meet with a healthcare provider, who may ask a few questions and check your blood pressure, temperature, breathing, pulse, and weight, as well as make other assessments
• Get set up in the space where you will be getting your infusion

IMPORTANT SAFETY INFORMATION

The most common side effects in patients treated with KANUMA are:

• In infants with rapidly progressive disease presenting within the first 6 months of life: diarrhea, vomiting, fever, stuffy or runny nose, low hemoglobin (red blood cells), cough, swelling of the nose and throat, and hives.
• In pediatric and adult patients: headache, fever, sore throat, swelling of the nose and throat, weakness, constipation, and nausea.

Please see the Important Safety Information on page 10 and the attached full Prescribing Information for KANUMA®.

DURING YOUR INFUSION

• First, an IV will be set up; if you are uncomfortable with needles, talk with your healthcare provider or doctor about strategies to make you feel more comfortable
• Once the infusion starts, your KANUMA treatment will continue for at least 2 hours (though your doctor may decide to increase or decrease your infusion time)
• If you feel anything out of the ordinary, let a healthcare provider know right away
• Tell your healthcare provider right away if you notice any of the following reactions during or after your infusion: chest pain or discomfort, wheezing or trouble breathing, rash or hives, red eyes, swelling of eyelids, rapid heartbeat, rapid breathing, or runny nose

AFTER YOUR INFUSION

• The IV or other device will be removed when the infusion is complete
• After your infusion, you may be asked to stay awhile so your healthcare provider can check your blood pressure, temperature, and pulse; if you do not feel well, let your healthcare provider know right away
• Tell your doctor or get medical help right away if you experience any severe signs or symptoms at any time during or after your infusion, such as chest pain or discomfort, wheezing or trouble breathing, rash or hives, red eyes, swelling of eyelids, rapid heartbeat, rapid breathing, or runny nose

Remember, your infusion team is there for YOU. If you have questions or need assistance, just ask.
KANUMA SUPPORT BY

Whether you want to learn more about LAL-D, are considering discussing KANUMA with your doctor, or are already on treatment, OneSource is here to help. Alexion’s objective is that every person living with LAL-D who can benefit from KANUMA will have access to it. Once you have discussed KANUMA with your doctor, and signed up with OneSource, you will be matched with a dedicated nurse case manager who can help answer any questions you may have about KANUMA or LAL-D.

OneSource is staffed by Alexion nurse case managers who provide one-to-one education, information on funding options and access to KANUMA, and ongoing treatment support for people living with LAL-D and their caregivers.

Our nurse case managers provide personalized support:
• Assistance from a dedicated nurse case manager
• Answers to questions about LAL-D or KANUMA
• Resources and education on the infusion process
• Help connecting patients with other families affected by LAL-D

IMPORTANT SAFETY INFORMATION
Tell your doctor if you are pregnant or plan to become pregnant, or are breastfeeding or plan to breastfeed.

These are not all of the possible side effects of KANUMA. Call your healthcare provider for medical advice about side effects. To report suspected side effects contact Alexion at 1-844-259-6783 or the FDA at 1-800-FDA-1088.

Please see the Important Safety Information on page 10 and the attached full Prescribing Information for KANUMA®.
KANUMA® (sebelipase alfa)
INDICATION & IMPORTANT SAFETY INFORMATION

INDICATION
KANUMA (sebelipase alfa) is indicated for the treatment of patients with a diagnosis of lysosomal acid lipase deficiency (LAL-D).

IMPORTANT SAFETY INFORMATION
Life threatening and severe allergic reactions may occur in people who receive KANUMA. These reactions may occur in people who are starting treatment with KANUMA or in people who have previously received KANUMA without having an allergic reaction. Seek immediate medical care right away if you have any of the following signs or symptoms:

- Chest pain or discomfort
- Wheezing or trouble breathing
- Rash or hives
- Red eyes
- Swelling of eyelids
- Rapid heartbeat
- Rapid breathing
- Runny nose

Tell your doctor if you have had a severe allergic reaction to eggs or egg products, as people with a known history of egg allergies were excluded from clinical trials.

The most common side effects in patients treated with KANUMA are:

- In infants with rapidly progressive disease presenting within the first 6 months of life: diarrhea, vomiting, fever, stuffy or runny nose, low hemoglobin (red blood cells), cough, swelling of the nose and throat, and hives.
- In pediatric and adult patients: headache, fever, sore throat, swelling of the nose and throat, weakness, constipation, and nausea.

Tell your doctor if you are pregnant or plan to become pregnant, or are breastfeeding or plan to breastfeed.

These are not all of the possible side effects of KANUMA. Call your healthcare provider for medical advice about side effects. To report suspected side effects contact Alexion at 1-844-259-6783 or the FDA at 1-800-FDA-1088.

For additional Important Safety Information, please see the attached full Prescribing Information for KANUMA.
YOUR INFUSIONS WITH KANUMA

• **KANUMA is the only FDA-approved treatment for LAL-D.** KANUMA is administered by intravenous (IV) infusion and is available through a prescription.

• **Your healthcare team will help you schedule your infusions with KANUMA.** Your infusions may take place in your doctor’s office, a hospital, or a specialized infusion center.

• **When you arrive, a healthcare provider will get you settled and set up your IV.** Once your IV is set up, the infusion begins and will last at least 2 hours, though your doctor may decide to increase or decrease your infusion time.

• **After your infusion, the IV will be removed and your healthcare provider will check in with you.** Your healthcare provider may check your blood pressure, temperature, and pulse.

• **Talk to your doctor about the importance of receiving regular infusions with KANUMA.**

Get connected with your OneSource nurse case manager by calling 1-888-765-4747, Monday through Friday, 8:30 AM to 5 PM (ET).

Please see the Important Safety Information on page 10 and the attached full Prescribing Information for KANUMA®.

To learn more, visit kanuma.com.
HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use KANUMA safely and effectively. See full prescribing information for KANUMA.

KANUMA (sebelipase alfa) injection, for intravenous use
Initial U.S. Approval: 2015

— INDICATIONS AND USAGE —

KANUMA* is a hydrolytic lysosomal cholesterol ester and triglycerol-specific enzyme indicated for the treatment of patients with a diagnosis of Lysosomal Acid Lipase (LAL) deficiency. (1)

— DOSAGE AND ADMINISTRATION —

Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life: The recommended starting dosage is 1 mg/kg as an intravenous infusion once weekly. For patients who do not achieve an optimal clinical response, increase to 3 mg/kg once weekly. (2.1)

Pediatric and Adult Patients with LAL Deficiency: The recommended dosage is 1 mg/kg as an intravenous infusion once every other week. (2.1)

Administration Instructions (2.3):
• Infuse over at least 2 hours.
• Consider further prolonging the infusion time for the 3 mg/kg dose or if a hypersensitivity reaction occurs.
• Consider a 1-hour infusion for the 1 mg/kg dose in patients who tolerate the infusion.

— DOSAGE FORMS AND STRENGTHS —

Inject: 20 mg/10 mL (2 mg/mL) solution in single-use vials. (3)

— CONTRAINDICATIONS —

None. (4)

— WARNINGS AND PRECAUTIONS —

• Hypersensitivity Reactions including Anaphylaxis: Observe patients during and after the infusion. Consider interrupting the infusion or lowering the infusion rate, based on the severity of the reaction. If a severe hypersensitivity reaction occurs, immediately stop the infusion and initiate appropriate treatment. Pre-treatment with antipyretics and/or antihistamines may prevent subsequent reactions in those cases where symptomatic treatment is required. (5.1)

• Hypersensitivity to Eggs or Egg Products: Consider the risks and benefits of treatment in patients with known systemic hypersensitivity reactions to eggs or egg products. (5.2)

— ADVERSE REACTIONS —

The most common adverse reactions are:
• Patients with Rapidly Progressive Disease Presenting within the First 6 Months of Life (≥30%): diarrhea, vomiting, fever, rhinitis, anemia, cough, nasopharyngitis, and urticaria. (6.1)

• Pediatric and Adult Patients (≥8%): headache, fever, oropharyngeal pain, nasopharyngitis, and rash. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact Alexion at 1-844-259-6783 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch

See 17 for PATIENT COUNSELING INFORMATION.

Revised: 12/2015

FULL PRESCRIBING INFORMATION: CONTENTS*

1 INDICATIONS AND USAGE
2 DOSAGE AND ADMINISTRATION
2.1 Dosage
2.2 Preparation Instructions
2.3 Administration Instructions
3 DOSAGE FORMS AND STRENGTHS
4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
5.1 Hypersensitivity Reactions Including Anaphylaxis
5.2 Hypersensitivity to Eggs or Egg Products
6 ADVERSE REACTIONS
6.1 Clinical Trials Experience
6.2 Immunogenicity
8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
8.2 Lactation
8.4 Pediatric Use
8.5 Geriatric Use
11 DESCRIPTION
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
13.2 Animal Toxicology and/or Pharmacology
14 CLINICAL STUDIES
14.1 Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life
14.2 Pediatric and Adult Patients with LAL Deficiency
16 HOW SUPPLIED/STORAGE AND HANDLING
17 PATIENT COUNSELING INFORMATION

*Sections or subsections omitted from the full prescribing information are not listed.
Due to the potential for anaphylaxis, appropriate medical support should be readily available when KANUMA is administered. If anaphylaxis occurs, immediately discontinue the infusion and initiate appropriate medical treatment. Observe patients closely during and after the infusion. Informed patients of the signs and symptoms of anaphylaxis, and instruct them to seek immediate medical care should signs and symptoms occur.

The management of hypersensitivity reactions should be based on the severity of the reaction and may include temporarily interrupting the infusion, lowering the infusion rate, and/or treatment with antihistamines, antipyretics, and/or corticosteroids. If interrupted, the infusion may be resumed at a slower rate with increases as tolerated. Pre-treatment with antipyretics and/or antihistamines may prevent subsequent reactions in those cases where symptomatic treatment was required. If a severe hypersensitivity reaction occurs, immediately discontinue the infusion and initiate appropriate medical treatment.

Consider the risks and benefits of re-administering KANUMA following a severe reaction. Monitor patients with appropriate resuscitation measures available, if the decision is made to re-administer the product.

5.2 Hypersensitivity to Eggs or Egg Products
KANUMA is produced in the egg whites of genetically engineered chickens. Patients with a known history of egg allergies were excluded from the clinical trials. Consider the risks and benefits of treatment with KANUMA in patients with known systemic hypersensitivity reactions to eggs or egg products.

6 ADVERSE REACTIONS
6.1 Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.

In clinical trials, a total of 106 patients received treatment with KANUMA. The data described below reflect exposure to KANUMA in 75 patients who received KANUMA at dosages up to 3 mg/kg once weekly in clinical trials:

- Nine patients (5 males, 4 females) who had growth failure or other evidence of fatty acids.

Table 3 summarizes the most common adverse reactions that occurred in ≥8% of pediatric and adult patients receiving KANUMA and at a higher incidence than in patients receiving placebo.

Other less common adverse reactions reported in pediatric and adult patients who received KANUMA included anxiety and chest discomfort. Hypersplenism

Increases in circulating LDL-cholesterol (LDL-c) and triglycerides above pre-treatment values were observed in 29 of 36 (81%) and 21 of 36 (58%) patients, respectively, at 2 and 4 weeks following initiation of KANUMA [see Clinical Pharmacology (12.2)]. The maximum mean percentage increase was 18% for LDL-c at Week 2 and 5% for triglycerides at Week 4.

6.2 Immunogenicity
As with all therapeutic proteins, there is potential for immunogenicity. Patients have developed anti-drug antibodies (ADA) to KANUMA. Immunogenicity assay results are highly dependent on the sensitivity and specificity of the assay and may be influenced by several factors such as: assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies to KANUMA with the incidence of antibodies to other products may be misleading.

Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life
Seven of the 9 infants with rapidly progressive disease had at least one post-treatment ADA assessment, and 4 of these 7 (57%) patients developed ADA during treatment with KANUMA. Two of the 4 ADA-positive patients were determined to be positive for neutralizing antibodies that inhibit in vitro enzyme activity and cellular uptake of the enzyme. At the time of initial ADA positivity, 3 patients were receiving a dosage of 1 mg/kg once weekly and 1 patient was receiving a dosage of 3 mg/kg once weekly. Three of the 4 ADA-positive patients had ADA titers monitored from the initiation of treatment, and developed measurable ADA titers within the first 2 months of exposure. One of the 4 ADA-positive patients had persistent ADA titers. ADA titers decreased to undetectable levels in the remaining 3 patients while receiving continued treatment at a dosage of 3 mg/kg once weekly.

Hypersensitivity reactions occurred in all 4 of the ADA-positive patients, whereas they occurred in only 1 of the 3 ADA-negative patients. None of the patients discontinued treatment. In 1 patient, decreased growth velocity in a setting of neutralizing antibodies to KANUMA was observed.

Pediatric and Adult Patients with LAL Deficiency
Five of 35 (14%) KANUMA-treated pediatric and adult patients who completed the 20-week double-blind period of study treatment developed ADA. All patients were receiving 1 mg/kg once every other week. All 5 ADA-positive patients first developed measurable ADA titers within the first 3 months of exposure. Two of the 5 ADA-positive patients had a measurable ADA titer at one time point. In the 3 patients with measurable ADA titers at multiple time points, ADA titers decreased to undetectable levels during continued treatment. Two patients developed in vitro neutralizing antibodies during the open-label extension phase after 20 weeks and 52 weeks of treatment with KANUMA, respectively. There is no clear association between the development of ADA and decreased efficacy in pediatric and adult patients treated with KANUMA.

8 USE IN SPECIFIC POPULATIONS
8.1 Pregnancy
Risk Summary
There are no available data on KANUMA in pregnant women to inform any drug-associated risk. Animal reproductive studies conducted with sebelipase alfa showed no evidence of embryolethality, fetotoxicity, teratogenicity, or abnormal early embryonic development at dosages up to 164 and 526 times the human dosage of 1 mg/kg every other week (based on AUC) in rats and rabbits, respectively.

The background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively.

Animal Data
Sebelipase alfa administered during the period of organogenesis to rats (on gestation days 6, 9, 12, 15 and 17) and rabbits (on gestation days 7, 10, 13, 16 and 19) at intravenous doses up to 60 and 50 mg/kg respectively, approximately 164 and 526 times the human AUC of 1387 ng·h/mL at 1 mg/kg dose administered once every other week respectively did not cause any adverse effects on embryofetal development. A pre- and postnatal development study in rats showed no evidence of adverse effects on pre- and postnatal development at intravenous doses (administered on gestation days 6, 9, 12, 15, 18, and 20 and days 4, 7, 10, 14, and 17 postpartum) of sebelipase alfa up to 60 mg/kg/day (approximately 164 times the human AUC of 1387 ng·h/mL at 1 mg/kg dose administered once every other week).

8.2 Lactation
Risk Summary
There are no data on the presence of sebelipase alfa in human milk, the effects on the breastfed infant, or the effects on milk production. It is not known if sebelipase alfa is present in animal milk. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for KANUMA and any potential adverse effects on the breastfed infant from sebelipase alfa or from the underlying maternal condition.

8.4 Pediatric Use
Safety and effectiveness of KANUMA have been established in pediatric patients aged 1 month and older. Clinical trials with KANUMA were conducted in 56 pediatric patients (range 1 month to <18 years old) [see Clinical Studies (14)].

8.5 Geriatric Use
Clinical trials of KANUMA did not include any patients aged 65 years old and older. It is not known whether they respond differently than younger patients.

11 DESCRIPTION
KANUMA (sebelipase alfa) is a recombinant human lysosomal acid lipase (rH Lal). Lysosomal acid lipase (EC 3.1.1.13) is a lysosomal glycoprotein enzyme that catalyzes the hydrolysis of cholesteryl esters to free cholesterol and fatty acids and the hydrolysis of triglycerides to glycerol and free fatty acids.

KANUMA is produced by recombinant DNA technology in the egg white of eggs laid by genetically engineered chickens. Purified sebelipase alfa is a monomeric glycoprotein containing 6 N-linked

Table 3: Most Common Adverse Reactions* in Pediatric and Adult Patients with LAL Deficiency

<table>
<thead>
<tr>
<th>Adverse Reactions</th>
<th>KANUMA N = 36</th>
<th>Placebo N = 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>10 (28)</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Fever</td>
<td>9 (25)</td>
<td>7 (23)</td>
</tr>
<tr>
<td>Oropharyngeal pain</td>
<td>6 (17)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>4 (11)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>3 (8)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Constipation</td>
<td>3 (8)</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Nausea</td>
<td>3 (8)</td>
<td>2 (7)</td>
</tr>
</tbody>
</table>

* Reported in at least 8% of pediatric and adult patients receiving KANUMA and at a higher incidence than in patients receiving placebo.

Table 3: Most Common Adverse Reactions* in Pediatric Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life

<table>
<thead>
<tr>
<th>Adverse Reactions</th>
<th>KANUMA N=9</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>6 (67)</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>6 (67)</td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>5 (56)</td>
<td></td>
</tr>
<tr>
<td>Rhinitis</td>
<td>5 (56)</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>4 (44)</td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>3 (33)</td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>3 (33)</td>
<td></td>
</tr>
<tr>
<td>Urticaria</td>
<td>3 (33)</td>
<td></td>
</tr>
</tbody>
</table>

* Reported in more than 30% of patients receiving KANUMA.
glycosylation sites and has a molecular mass of approximately 55,000 daltons. The amino acid sequence for sebelipase alfa is the same as the amino acid sequence for human LAL. The specific activity of sebelipase alfa is 195 to 345 units/mg. One unit is the amount of enzyme activity that catalyzes the hydrolysis of 1 micromole of the synthetic substrate 4-methylumbelliferyl oleate per minute at 37°C under specified assay conditions.

KANUMA is supplied as a sterile, preservative-free, non-pyrogenic aqueous solution in single-use vials for intravenous infusion. Each vial contains sebelipase alfa 20 mg/10 mL. Each mL of solution contains sebelipase alfa (2 mg), citric acid monohydrate (1.57 mg), Human Serum Albumin (10 mg), and trisodium citrate dihydrate (13.7 mg) at pH 5.9.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

LAL deficiency is an autosomal recessive lysosomal storage disorder characterized by a genetic defect resulting in a marked decrease or loss in activity of the lysosomal acid lipase (LAL) enzyme. The primary site of action of the LAL enzyme is the lysosome, where the enzyme normally causes the breakdown of lipid particles including LDL-c. Deficient LAL enzyme activity results in progressive complications due to the lysosomal accumulation of cholesterol esters and triglycerides in multiple organs, including the liver, spleen, intestine, and the walls of blood vessels. The resulting lipid accumulation in the liver may lead to increased liver fat content and progression of liver disease, including fibrosis and cirrhosis. Lipid accumulation in the intestinal wall leads to malabsorption and growth failure. In parallel, dyslipidemia due to impaired degradation of lysosomal lipid is common with elevated LDL-c and triglycerides and low HDL-cholesterol (HDL-c).

Sebelipase alfa binds to cell surface receptors via glycans expressed on the protein and is subsequently internalized into lysosomes. Sebelipase alfa catalyzes the lysosomal hydrolysis of cholesteryl esters and triglycerides to free cholesterol, glycerol, and free fatty acids.

12.2 Pharmacodynamics

In clinical trials, after initiation of dosing with KANUMA, breakdown of accumulated lysosomal lipid led to initial increases in LDL-c and triglycerides within the first 2 to 4 weeks of treatment. In general, following increases in LDL-c and triglycerides, these parameters decreased to below pre-treatment values within 8 weeks of treatment with KANUMA. In all patients with elevated alanine aminotransferase (ALT) values at baseline (82 of 84 patients in clinical trials), reductions in ALT values were observed, generally within 2 weeks after initiation of treatment with KANUMA. Treatment interruption resulted in increases in LDL-c and ALT values and decreases in HDL-c.

12.3 Pharmacokinetics

The pharmacokinetic profile of sebelipase alfa was nonlinear with a greater than dose-proportional increase in exposure between 1 and 3 mg/kg based on non-compartmental analysis of data from 26 adults. No accumulation was observed following once weekly or once every other week dosing. Using a population pharmacokinetic model, sebelipase alfa pharmacokinetic parameters were estimated for 65 pediatric and adult patients who received intravenous infusions of KANUMA at 1 mg/kg at Week 22 (Table 4). 24 patients were 4 to 11 years old, 23 were 12 to 17 years old, and 18 were adults. The pharmacokinetic profiles of sebelipase alfa were similar between adolescents and adults. Tmax and T1/2 were similar across all age groups.

Table 4: Mean (SD) Pharmacokinetics Parameters at Week 22 in Pediatric and Adult Patients Receiving 1 mg/kg Once Every Other Week

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4-11 years old</th>
<th>12-17 years old</th>
<th>≥18 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>24</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>AUC (ng∙hr/mL)</td>
<td>942 (388)</td>
<td>1454 (699)</td>
<td>1861 (599)</td>
</tr>
<tr>
<td>Cmax (mg/mL)</td>
<td>490 (205)</td>
<td>784 (480)</td>
<td>957 (303)</td>
</tr>
<tr>
<td>Tmax (hr)</td>
<td>1.3 (0.6)</td>
<td>1.1 (0.3)</td>
<td>1.3 (0.6)</td>
</tr>
<tr>
<td>CL (L/h)</td>
<td>31.1 (7.1)</td>
<td>37.4 (12.4)</td>
<td>38.2 (12.5)</td>
</tr>
<tr>
<td>Vc (L)</td>
<td>3.6 (3.0)</td>
<td>5.4 (2.4)</td>
<td>5.3 (1.6)</td>
</tr>
<tr>
<td>T1/2 (min)</td>
<td>5.4 (4.3)</td>
<td>6.6 (3.7)</td>
<td>6.6 (3.7)</td>
</tr>
</tbody>
</table>

Parameter values were estimated using a population pharmacokinetic model. AUC = Area under the plasma concentration time curve. Cmax = Maximum concentration. Tmax = Time to maximum concentration. CL = Clearance. Vc = Central volume of distribution. T1/2 = Half-life.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Long-term studies in animals to evaluate carcinogenic potential or studies to evaluate mutagenic potential have not been performed with sebelipase alfa. Sebelipase alfa at intravenous doses up to 60 mg/kg administered twice weekly (approximately 164 times the human AUC of 1387 ng∙h/mL at 1 mg/kg dose administered once every other week) was found to have no adverse effect on fertility and reproductive performance of male and female rats.

13.2 Animal Toxicology and/or Pharmacology

In a rat disease model of LAL deficiency that exhibits several abnormalities analogous to the human disease, sebelipase alfa administered intravenously at dosages up to 3 mg/kg once weekly showed improvements in survival, body weight gain, organ weight reduction, reduction in serum transaminases (ALT and aspartate aminotransferase [AST]), reduction in serum and hepatic lipids, and improvement in liver histopathology.

14 CLINICAL STUDIES

14.1 Patients with Rapidly Progressive LAL Deficiency Presenting within the First 6 Months of Life

A multicenter, open-label, single-arm clinical study of KANUMA was conducted in 9 infants with LAL deficiency who had growth failure or other evidence of rapidly progressive disease prior to 6 months of age. The age range at entry was 1 to 6 months. Patients received KANUMA at 0.35 mg/kg once weekly for the first 2 weeks and then 1 mg/kg once weekly. Due to suboptimal clinical response, doses in all 6 surviving patients were escalated to 3 mg/kg once weekly, between 4 and 88 weeks (median 11 weeks) after starting treatment at 1 mg/kg. In one patient, the dose was escalated to 5 mg/kg once weekly at Week 88 due to decreased growth velocity in a setting of positive neutralizing anti-drug antibodies to KANUMA. The recommended dosage for these patients is 1 mg/kg to 3 mg/kg once weekly [see Dosage and Administration (2.1)].

Efficacy of KANUMA was assessed by comparing the survival of 9 KANUMA-treated patients at 12 months of age with an untreated historical cohort of 21 patients with a similar age at disease presentation and clinical characteristics. Of the 9 KANUMA-treated infants, 6 patients survived beyond 12 months of age, compared to 0 of 21 patients in the historical cohort, all of whom died by 8 months of age. The median age of the 6 surviving KANUMA-treated patients was 18.1 months (range 12 to 42.2 months).

Following initiation of treatment with KANUMA 1 mg/kg once weekly, weight-for-age z-scores improved in 3 of 5 surviving patients with growth failure, and all 6 surviving patients demonstrated improvements in weight-for-age z-scores following dose escalation to 3 mg/kg once weekly.

14.2 Pediatric and Adult Patients with LAL Deficiency

The safety and efficacy of KANUMA were assessed in 66 pediatric and adult patients with LAL deficiency, aged 4 to 58 years (71% were less than 18 years old), in a multicenter, double-blind, placebo-controlled trial. Patients were randomized to receive KANUMA at a dosage of 1 mg/kg (n=36) or placebo (n=30) once every other week for 20 weeks in the double-blind period. Sixty-two of the 66 (94%) patients had LDL-c of 130 mg/dL or greater at study entry. The majority of patients (58%) had LDL-c above 190 mg/dL at study entry, and 24% of patients with LDL-c above 190 mg/dL remained on lipid lowering medications.

At the completion of the 20-week double-blind period of the trial, a statistically significant improvement in percent change from baseline in LDL-c was observed in the KANUMA-treated group as compared to the placebo group (mean difference and 95% C.I.: -22%, [-33%, -15%]; p<0.001). LDL-c of less than 130 mg/dL was achieved in 13 of 32 (41%) versus 5 of 30 (17%) patients in the KANUMA and placebo groups, respectively (mean difference and 95% C.I.: -3%, [-19%, 11%]; p=0.0375) and triglycerides (mean difference and 95% C.I.: -1%, [-10%, 8%]; p=0.0375) and increases in HDL-c (mean difference and 95% C.I.: -20%, [12%, 26%]; p<0.001) were observed in KANUMA-treated patients and in only 2 of 30 (7%; 95% C.I.: [0%, 16%]) placebo-treated patients with baseline LDL-c of 130 mg/dL or greater. A statistically significant improvement in percent change from baseline at 20 weeks was also observed in the KANUMA-treated group compared to the placebo group for other parameters related to LAL deficiency, including decreases in non-HDL-c (mean difference and 95% C.I.: -21%, [-30%, -15%]; p<0.001) and triglycerides (mean difference and 95% C.I.: -14%, [-28%, -1%]; p=0.0375) and increases in HDL-c (mean difference and 95% C.I.: -20%, [12%, 26%]; p<0.001).

KANUMA-treated patients were more likely to experience reductions in LDL-c and ALT values and decreases in HDL-c.

16 HOW SUPPLIED/STORAGE AND HANDLING

KANUMA 20 mg/10 mL vials are supplied as a sterile, preservative-free, nonpyrogenic solution in single-use, glass vials. NDC 25682-007-01: 20 mg/10 mL vial

Store KANUMA under refrigeration between 2°C to 8°C (36°F to 46°F) in original carton to protect from light. Do not shake or freeze the vials.

17 PATIENT COUNSELING INFORMATION

Hypersensitivity Reactions, including Anaphylaxis

Advise patients and caregivers that reactions related to administration and infusion may occur during and after KANUMA treatment, including life-threatening anaphylaxis and severe hypersensitivity reactions. Inform patients of the signs and symptoms of anaphylaxis and hypersensitivity reactions, and have them seek immediate medical care should signs and symptoms occur [see Warnings and Precautions (5.1)].

Manufactured by: Alexion Pharmaceuticals Inc.
100 College Street, New Haven, CT 06510
US License Number: 1743
1-888-765-4747 (phone)

KANUMA is a registered trademark of Alexion Pharmaceuticals Inc.